Electro-magneto-thermo-mechanical Behaviors of a Radially Polarized FGPM Thick Hollow Sphere
Authors
Abstract:
In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic field, is subjected to a temperature gradient, inner and outer pressures and a constant electric potential difference between its inner and outer surfaces. The thermal, piezoelectric and mechanical properties except the Poisson’s ratio are assumed to vary with the power law functions through the thickness of the hollow sphere. By solving the heat transfer equation, in the first step, a symmetric distribution of temperature is obtained. Using the infinitesimal electro-magneto-thermo-elasticity theory, then, the Navier’s equation is solved and exact solutions for stresses, electric displacement, electric potential and perturbation of magnetic field vector in the FGPM hollow sphere are obtained. Moreover, the effects of magnetic field vector, electric potential and material in-homogeneity on the stresses and displacements distributions are investigated. The presented results indicate that the material in-homogeneity has a significant influence on the electro-magneto-thermo-mechanical behaviors of the FGPM hollow sphere and should therefore be considered in its optimum design.
similar resources
Time-Dependent Thermo-Electro-Mechanical Creep Behavior of Radially Polarized FGPM Rotating Cylinder
Time-dependent creep analysis is crucial for the performance and reliability of piezoactuators used for high-precision positioning and load-bearing applications. In this study history of stresses, deformations and electric potential of hollow rotating cylinders made of functionally graded piezoelectric material (FGPM), e.g., PZT_7A have been investigated using Mendelson’s method of successive e...
full textExact Solution for Electrothermoelastic Behaviors of a Radially Polarized FGPM Rotating Disk
This article presents an exact solution for an axisymmetric functionally graded piezoelectric (FGP) rotating disk with constant thickness subjected to an electric field and thermal gradient. All mechanical, thermal and piezoelectric properties except for Poisson’s ratio are taken in the form of power functions in radial direction. After solving the heat transfer equation, first a symmetric dist...
full textHygrothermal Creep and Stress Redistribution Analysis of Temperature and Moisture Dependent Magneto-Electro-Elastic Hollow Sphere
In this article, the time-dependent stress redistribution analysis of magneto-electro-elastic (MEE) thick-walled sphere subjected to mechanical, electrical, magnetic and uniform temperature gradient as well as moisture concentration gradient is presented. Combining constitutive equations of MEE with stress-strain relations as well as strain-displacement relations results in obtaining a differen...
full textMagneto-Electro-Thermo-Mechanical Response of a Multiferroic Doubly-Curved Nano-Shell
Free vibration of a simply-supported magneto-electro-elastic doubly-curved nano-shell is studied based on the first-order shear deformation theory in the presence of the rotary inertia effect. To model the electric and magnetic behaviors of the nano-shell, Gauss’s laws for electrostatics and magneto statics are used. By using Navier’s method, the partial differential equations of motion are red...
full textTransient Thermal Stress Problem of a Functionally Graded Magneto-Electro-Thermoelastic Hollow Sphere
This article is concerned with the theoretical analysis of the functionally graded magneto-electro-thermoelastic hollow sphere due to uniform surface heating. We analyze the transient thermoelastic problem for a functionally graded hollow sphere constructed of the spherical isotropic and linear magneto-electro-thermoelastic materials using a laminated composite mode as one of theoretical approx...
full textStatic deformation of a spherically anisotropic and multilayered magneto-electro-elastic hollow sphere
Article history: Received 2 December 2014 Received in revised form 3 February 2015 Available online 13 February 2015
full textMy Resources
Journal title
volume 2 issue 4
pages 305- 315
publication date 2010-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023